nmpp
void nmblas_sgemv (const enum nm_trans TRANS, const int M, const int N, const float ALPHA, const float *A, const int LDA, const float *X, const int INCX, const float BETA, float *Y, const int INCY)
 performs one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, where alpha and beta are scalars, x and y are vectors and A is an m by n matrix. Подробнее...
 
void nmblas_dgemv (const enum nm_trans TRANS, const int M, const int N, const double ALPHA, const double *A, const int LDA, const double *X, const int INCX, const double BETA, double *Y, const int INCY)
 performs one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, where alpha and beta are scalars, x and y are vectors and A is an m by n matrix. Подробнее...
 
void nmblas_sger (const int M, const int N, const float ALPHA, const float *X, const int INCX, const float *Y, const int INCY, float *A, const int LDA)
 perform the rank 1 operation A := alpha*x*y' + A, where alpha is a scalar, x is an m element vector, y is an n element vector and A is an m by n matrix. Подробнее...
 

Подробное описание

Функции

◆ nmblas_dgemv()

void nmblas_dgemv ( const enum nm_trans  TRANS,
const int  M,
const int  N,
const double  ALPHA,
const double *  A,
const int  LDA,
const double *  X,
const int  INCX,
const double  BETA,
double *  Y,
const int  INCY 
)

performs one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, where alpha and beta are scalars, x and y are vectors and A is an m by n matrix.

Аргументы
[in]TRANSis CHARACTER*1 On entry, TRANS specifies the operation to be performed as follows:

TRANS = 'N' or 'n' y := alpha*A*x + beta*y.

TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.

TRANS = 'C' or 'c' y := alpha*A**T*x + beta*y.

Аргументы
[in]Mspecifies the number of rows of the matrix A. M must be at least zero.
[in]Nspecifies the number of columns of the matrix A. N must be at least zero.
[in]ALPHALPHA specifies the scalar alpha
[in]Aarray, dimension ( LDA, N ) Before entry, the leading m by n part of the array A must contain the matrix of coefficients
[in]LDAspecifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ).
[in]Xarray, dimension at least ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x.
[in]INCXINCX specifies the increment for the elements of X. INCX must not be zero.
[in]BETAspecifies the scalar beta. When BETA is supplied as zero then Y need not be set on input.
[in,out]Yis REAL array, dimension at least ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. Before entry with BETA non-zero, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y.
[in]INCYspecifies the increment for the elements of Y. INCY must not be zero.
Возвращает

◆ nmblas_sgemv()

void nmblas_sgemv ( const enum nm_trans  TRANS,
const int  M,
const int  N,
const float  ALPHA,
const float *  A,
const int  LDA,
const float *  X,
const int  INCX,
const float  BETA,
float *  Y,
const int  INCY 
)

performs one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, where alpha and beta are scalars, x and y are vectors and A is an m by n matrix.

Аргументы
[in]TRANSis CHARACTER*1 On entry, TRANS specifies the operation to be performed as follows:

TRANS = 'N' or 'n' y := alpha*A*x + beta*y.

TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.

TRANS = 'C' or 'c' y := alpha*A**T*x + beta*y.

Аргументы
[in]Mspecifies the number of rows of the matrix A. M must be at least zero.
[in]Nspecifies the number of columns of the matrix A. N must be at least zero.
[in]ALPHALPHA specifies the scalar alpha
[in]Aarray, dimension ( LDA, N ) Before entry, the leading m by n part of the array A must contain the matrix of coefficients
[in]LDAspecifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ).
[in]Xarray, dimension at least ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x.
[in]INCXINCX specifies the increment for the elements of X. INCX must not be zero.
[in]BETAspecifies the scalar beta. When BETA is supplied as zero then Y need not be set on input.
[in,out]Yis REAL array, dimension at least ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. Before entry with BETA non-zero, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y.
[in]INCYspecifies the increment for the elements of Y. INCY must not be zero.
Возвращает

◆ nmblas_sger()

void nmblas_sger ( const int  M,
const int  N,
const float  ALPHA,
const float *  X,
const int  INCX,
const float *  Y,
const int  INCY,
float *  A,
const int  LDA 
)

perform the rank 1 operation A := alpha*x*y' + A, where alpha is a scalar, x is an m element vector, y is an n element vector and A is an m by n matrix.

Аргументы
[in]MM is INTEGER On entry, M specifies the number of rows of the matrix A. M must be at least zero.
[in]NN is INTEGER On entry, N specifies the number of columns of the matrix A. N must be at least zero.
[in]ALPHAALPHA is REAL On entry, ALPHA specifies the scalar alpha.
[in]XX is REAL array, dimension at least ( 1 + ( m - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the m element vector x.
[in]INCXINCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.
[in]YY is REAL array, dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y.
[in]INCYINCY is INTEGER On entry, INCY specifies the increment for the elements of Y. INCY must not be zero.
[in]INCXINCX specifies the increment for the elements of X. INCX must not be zero.
[in,out]AA is REAL array, dimension ( LDA, N ) Before entry, the leading m by n part of the array A must contain the matrix of coefficients. On exit, A is overwritten by the updated matrix.
[in]LDALDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ).
Возвращает